Automatic Learning of Background Semantics in Generic Surveilled Scenes

نویسندگان

  • Carles Fernández
  • Jordi Gonzàlez
  • F. Xavier Roca
چکیده

Advanced surveillance systems for behavior recognition in outdoor traffic scenes depend strongly on the particular configuration of the scenario. Scene-independent trajectory analysis techniques statistically infer semantics in locations where motion occurs, and such inferences are typically limited to abnormality. Thus, it is interesting to design contributions that automatically categorize more specific semantic regions. State-of-the-art approaches for unsupervised scene labeling exploit trajectory data to segment areas like sources, sinks, or waiting zones. Our method, in addition, incorporates scene-independent knowledge to assign more meaningful labels like crosswalks, sidewalks, or parking spaces. First, a spatiotemporal scene model is obtained from trajectory analysis. Subsequently, a so-called GI-MRF inference process reinforces spatial coherence, and incorporates taxonomy-guided smoothness constraints. Our method achieves automatic and effective labeling of conceptual regions in urban scenarios, and is robust to tracking errors. Experimental validation on 5 surveillance databases has been conducted to assess the generality and accuracy of the segmentations. The resulting scene models are used for model-based behavior analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation and Hybridity in Scenes and Frames Semantics

 The present study is a theoretical attempt to illustrate how Fillmore's Scenes and Frames Semantics (SFS) could be employed as a framework to portray the process of understanding and translating hybrid texts. It first reviews the origin of SFS; then it maps SFS onto Nida’s linguistic model of translation process and the Interpretive Theory of Translation; it examines in the next section, withi...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Effect generic and non-generic feedback on Motor Learning basketball free throw in Children

Non-generic feedback refers to a specific event and that task performance is the reason to the acquisition of skills and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The Goal of this study was to determine the generic and non-generic feedback effects on children’s motor learning basketball free throw. This research was...

متن کامل

Automatic excitement-level detection for sports highlights generation

The problem of automatic excitement detection in baseball videos is considered and applied for highlight generation. This paper focuses on detecting exciting events in video using complementary information from the audio and video domains. First, a new measure for non-stationarity which is extremely effective in separating background from speech is proposed. This new feature is employed in an u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010